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Syndecans are important mediators of signalling by transmitting external stimuli into the cells. This role in signal transduction has
been attributed mainly to the membrane-bound syndecans. In the last years, however, the soluble ectodomain of syndecans
generated by shedding has come into the focus of research as this process has been show to modulate the syndecan-dependent
signalling pathways, as well as other pathways. This review summarizes the current knowledge about the induction of syndecan
shedding and the different pathways modulated by shed syndecan proteins. This review summarizes the known and putative
sheddases for each syndecan and describes the exemplary conditions of sheddase activity for some syndecans. This review
summarizes the proposed use of shed syndecans as biomarkers for various diseases, as the shedding process of syndecans depends
crucially on tissue- and disease-specific activation of the sheddases. Furthermore, the potential use of soluble syndecans as a
therapeutic option is discussed, on the basis of the current literature.
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Syndecan structure
Syndecans belong to the family of type I transmembrane
heparan sulfate proteoglycans, which consist of four mem-
bers in vertebrates (Sdc1, Sdc2, Sdc3 and Sdc4). The core
protein of these proteoglycans is composed of an extracel-
lular, transmembrane and intracellular domain (Figure 1).
Sdc1, Sdc2 and Sdc4 are translated with a signal peptide,
which is cleaved during the processing of the protein
(Figure 1). All syndecans span the plasma membrane via a
24–25 amino acid long hydrophobic transmembrane
domain. The transmembrane domain includes a GXXXG
motif, which allows for a strong, SDS-resistant
homodimerization of syndecans (Choi et al., 2005). The
transmembrane and cytoplasmic domains share approxi-
mately 60–70% amino acid sequence identity between all
family members (David, 1993).

The membrane proximal region C1 is highly conserved
among all syndecans (90%) and also among different species,
as well as the C-terminal C2 region (100% conservation be-
tween syndecans). These two domains flank a variable region
V1, which differs for each syndecan and exhibits only 15%
similarity between all syndecans (Figure 1). However, Sdc1
and Sdc3 have a higher similarity in this variable region, as
well as Sdc2 and Sdc4. This finding gave rise to the assump-
tion that these members of the syndecan family are more
closely related to each other than to the others (Carey, 1997).

The ectodomains of syndecans share only weak homol-
ogy between all four members (Figure 1). The putative
glycosaminoglycan (GAG) attachment sites have similar
consensus sequences. Two attachment sites have the
consensus sequence SGXG, and three others have the
consensus sequence (E/D) GSG (E/D). The existence of
GAG binding sites either at both ends of the ectodomain
(Sdc1 and Sdc3) or only at the distal part (Sdc2 and Sdc4)
of the ectodomain is another indicator for the sub-
classification of syndecans (Elenius and Jalkanen, 1994).
Syndecans have predominantly heparan sulfate-GAG
(HS-GAG) chains attached to the extracellular domain and
in the case of Sdc1 and Sdc3, additionally chondroitin
sulfate GAG chains (Deepa et al., 2004).

The extracellular domain of all syndecans contains a
proteinase-sensitive dibasic lysine-arginine-site (KR in Sdc2
and Sdc4) or arginine-lysine-site (RK in Sdc1, Sdc2 and Sdc3)
adjacent to the transmembrane domain. This site was pro-
posed to be a cleavage site for plasmin and thrombin. In
1989, the shedding of Sdc1 at this site was described by
(Saunders et al., 1989). Also, thrombin cleaved the Sdc4 at
the Lys114–Arg115 link (Schmidt et al., 2005). There are cur-
rently no data on the plasmin-dependent and thrombin-
dependent shedding of Sdc2 and Sdc3, but it is likely that
both can be shed at the respective sites. Furthermore, as
discussed later in this review, several different shedding sites
are located in the extracellular part of the protein.

Figure 1
Sequence alignment of all syndecan family members. The alignment indicates the different regions for each syndecan, including signal peptide
(green), extracellular domain (yellow), transmembrane domain (blue) and intracellular domain (red). Furthermore, the homodimerization
domain within the transmembrane region is marked in grey. Black bars indicate the C1, C2 and V region within the intracellular domain
(Uniprot UniProt website at http://www.uniprot.org/).
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Syndecan expression
Syndecans are involved in growth control, cell spreading, cel-
lular recognition, cellular adhesion and signal transduction
(Couchman, 2010; Choi et al., 2011). Each syndecan has a
tissue-specific and developmentally regulated pattern of ex-
pression (Kim et al., 1994). For example, duringmurine devel-
opment, Sdc1 is expressed first in the ectoderm and later on
in mesodermal cells (Sutherland et al., 1991). In mature tis-
sue, epithelial cells permanently express Sdc1 (Kim et al.,
1994). The expression of Sdc3 is found during skeletal and
neural development, where it is supposed to complement
the function of Sdc1 (Bernfield et al., 1993; Kim et al., 1994).
Sdc2 and Sdc4 are also expressed during mouse embryogene-
sis, specifically during endochondral ossification (David,
1993; Bertrand et al., 2013). In contrast to the other
syndecans, Sdc4 is expressed ubiquitously (Kim et al., 1994).

As mentioned before, syndecans are mediators of various
cellular functions. One explanation for how syndecans can
fulfil all these functions might be the differential regulation
of their expression during development and disease. For ex-
ample, Sdc4 exhibits a major function in regulating cell ma-
trix remodelling under inflammatory conditions, such as
wound healing, fracture healing and osteoarthritis
(Echtermeyer et al., 2001; Echtermeyer et al., 2009; Bertrand
et al., 2013). To exert this function, the expression of Sdc4 is
regulated in an NFκB-dependent manner, thereby explaining
the increased expression under inflammatory conditions
(Zhang et al., 1999; Wang et al., 2014). Apart from the specific
regulation of expression, syndecans are able to initiate down-
stream signalling cascades via the C1 region, located just be-
neath the membrane, which is thought to interact with the
cell cytoskeleton and cellular Src kinase proteins (Kinnunen
et al., 1998). Also, the C2 region, which contains a PDZ1 or
PDZ2 domain, binds adaptor proteins, and the interaction
mediates vesicular trafficking and exosome biogenesis (Gao
et al., 2000; Baietti et al., 2012). The V region is thought to
determine the role of syndecans in downstream signalling
processes (Afratis et al., 2017).

Beside this direct syndecan-dependent activation of signal-
ling cascades, syndecans interact via their HS-GAG chains with
a variety of ligands such as growth factors, cytokines, protein-
ases, adhesion receptors, extracellular matrix (ECM) compo-
nents and morphogens (Pap and Bertrand, 2013). These HS-
protein interactions are evolutionarily conserved and strongly
HS-sequence and especially sequencemodification specific. Var-
ious enzymes are needed for the maturation of HS-GAG chains,
including multiple glycosyltransferases, sulfotransferases and
an epimerase. It is known thatmany different cell types produce
HS chains with several post-translational modifications, which
determine the activation of downstream signalling cascades
(Gesteira et al., 2011; Shah et al., 2011; Mortier et al., 2012). This
massive influence of HS-GAG chain modifications on signal
transduction is explained by the fact that these modifications
modulate the binding capacity of morphogens and
chemokines, as, for example, the 6-O-sulfation of HS-GAG
chains seems to be necessary for activation of FGF andWnt sig-
nalling (Dhoot et al., 2001; Wang et al., 2004)

Interestingly, mutations inmost of these HS-GAGmodify-
ing enzymes are associated with different diseases, including
various malfunctions during skeletal development (Koziel

et al., 2004; Kluppel et al., 2005; Otsuki et al., 2008; Otsuki
et al., 2010; Otsuki et al., 2017) and neuronal network
formation (Rhiner and Hengartner, 2006).

Upon binding of different morphogens to the GAG
chains, syndecans on the one hand interact with the respec-
tive receptor at the cell surface. On the other hand, it has
been shown that syndecans can be shed from the cell surface
to build morphogen gradients throughout the ECM, making
the shedding a relevant process in syndecan-dependent
signalling pathways.

Shedding
It has been known for many years that syndecans link the cy-
toskeleton to the ECM (Rapraeger et al., 1986). One of the first
publications about syndecan shedding described this process
as an attempt of cells to release themselves from this interac-
tion with the ECM by a proteolytic cleavage (Jalkanen et al.,
1987). Today, it is known that under physiological condi-
tions, the ectodomains of syndecans are constitutively shed
to a small degree. This shedding rate can be substantially in-
creased in response to external stimuli (Kim et al., 1994;
Manon-Jensen et al., 2010). This review gives a broad over-
view about different pathways and mechanisms activated
and or modulated by the shed syndecans. There are certainly
more sheddases and downstream activated pathways, which
are not mentioned in this section, which are detailed in shed-
ding specific reviews (Manon-Jensen et al., 2010; Nam and
Park, 2012).

Different sheddases are able to cleave syndecans on the
extracellular side, releasing a soluble syndecan consisting of
the extracellular domain and the attached GAG chains (Brule
et al., 2006; Pruessmeyer et al., 2010). These soluble
syndecans may function as paracrine or autocrine effectors,
or function as decoy receptors by competing for the same li-
gands as their cell bound counterparts (Kainulainen et al.,
1998) (Figure 2A and B). These cleaved fragments contain in-
tact HS-GAG chains that retain biological activity similar to
that of their parent molecule. These fragments still have the
ability to down-regulate signal transduction by competing
with themembrane-bound syndecans for extracellular ligand
binding and sequestering the HS binding factors in ECM
(Hayashida et al., 2008) (Figure 2A).

Soluble ectodomains of syndecans, however, do not only
function as competitive inhibitors but can also work as ago-
nists. For example, the ectodomain of Sdc1 binds to FGF-2
more efficiently than the cell surface bound Sdc1 and inhibits
its mitogenicity (Su et al., 2007). Upon degradation of the
GAG chains attached to the soluble Sdc1 ectodomain by
heparanase present in the wound fluids, FGF-2 is activated
to enhance wound repair (Kato et al., 1998; Yang et al.,
2002; Mahtouk et al., 2007). Hence, syndecans have diverse
functions both as membrane bound and soluble forms.
Therefore, soluble syndecans can also help form morphogen
gradients across tissues that influence cell behaviour, for ex-
ample, migration in tissue repair (Li et al., 2002; Manon-
Jensen et al., 2010) (Figure 2B).

Furthermore, heparanase, an endo-β-D-glucuronidase,
plays a role in the shedding of syndecans. This fact is counter-
intuitive, as heparanase is known only to cleave the HS-
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GAG chains of proteoglycans but not the core protein of
syndecans (Pikas et al., 1998). The enhanced shedding of
syndecans activated by heparanase is mediated indirectly,
via the up-regulation of MMP9 and induction of ERK
signalling (Purushothaman et al., 2008) (Figure 2C). It has
been shown that the 2-O-sulfated HS-GAG chains of Sdc1
inhibit neutrophil-dependent cathelicidin secretion,
thereby promoting Staphylococcus aureus infection
(Hayashida et al., 2015). These data indicate that the main
effect of heparanase on syndecan shedding is the activation
of inflammatory signalling cascades, inducing the produc-
tion of sheddases.

Soluble syndecans can also help form morphogen gradi-
ents due to the factors attached to the HS-GAG chains. Fur-
thermore, the cleaved HS-GAG chains themselves can
induce cellular responses. Interestingly, shedding of Sdc1
exposes a cryptic domain on the soluble core protein that
contains binding sites for VLA4 and VEGF receptor 2
(VEGFR2). The shed Sdc1 activates VEGFR2 and stimulates
thereby tumour cell invasion (Jung et al., 2016) (Figure 2D).

During the shedding of the external part of syndecan,
also, a C-terminal membrane-bound fragment is generated
(Fitzgerald et al., 2000). These C-terminal syndecan
fragments are further cleaved at the transmembrane region
by presenilin-dependent γ secretase upon ectodomain shed-
ding (Schulz et al., 2003). The C-terminal Sdc2 fragment up-
regulates MMP7 expression via the protein kinase
Cγ-mediated focal adhesion kinase (FAK)/ERK signalling
pathway in colon cancer, thereby up-regulating its own shed-
ding (Jang et al., 2017) (Figure 2E).

Interestingly, the shed syndecan fragment can be taken
up by cells, as it has been shown that shed Sdc1 translocated
to the nucleus of cells delivering growth factors and
inhibiting histone acetylation (Stewart et al., 2015)
(Figure 2F).

Syndecan ectodomain shedding is mediated by various
MMPs, such as MMP2, MMP7 and MMP9 (Schlondorff and
Blobel, 1999; Arribas and Borroto, 2002). Furthermore, plas-
min and thrombin have been shown to function as sheddases
for syndecans (Schmidt et al., 2005; Wang et al., 2005).

Figure 2
Schematic representation of different effects of shed syndecans on signalling cascades. The diagram depicts the various signalling influences of
soluble syndecans on downstream signalling cascades that are discussed in the text. (A) Decoy receptor; (B) morphogen gradient; (C)
heparanase-induced shedding; (D) receptor activation by shed Sdc1; (E) C-terminal fragment signalling; (F) shed syndecan in the nucleus.
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Shedding of Sdc1 and Sdc4 is accelerated by activation of
thrombin and the EGF. This shows that proteases and growth
factors, which are active during wound repair, can accelerate
syndecan shedding from cell surfaces (Subramanian et al.,
1997). Interestingly, MMPs cleave syndecans at the
juxtamembrane site in a process that is usually accelerated
during diseased conditions (Manon-Jensen et al., 2010). The
disintegrin and metalloproteinases (ADAMs), however,
cleave Sdc4 near the N-terminal tip of the first HS-GAG chain
attachment site (Gao et al., 2004; Rodriguez-Manzaneque
et al., 2009) (Figure 3).

Sdc1 contains the general consensus motif for cleavage
by MMP7, MMP9 and MMP14, and in vitro and in vivo evi-
dence of shedding has been published (Li et al., 2002; Endo
et al., 2003). Chen et al. (2009) showed that epithelial injury
induced Sdc1 shedding from the epithelium of wild-type
mice but not from the epithelium of MMP7 knockout mice,
indicating an essential role for MMP7 in the shedding pro-
cess. A very recent study showed that MMP14 sheds Sdc1
during liver fibrosis, where the soluble Sdc1 interferes with
TGF-β1 signalling and thereby up-regulates its own
sheddase (Regos et al., 2018). The gelatinases MMP2 and
MMP9 have been shown to shed Sdc1, Sdc2 and Sdc4 (Brule
et al., 2006; Fears et al., 2006). Controversial data have been
published on the involvement of TNF-α-converting enzyme,
ADAM-17 (TACE), in the shedding of syndecans. Fitzgerald
found that ectodomain shedding of Sdc1 and Sdc4 is TACE
independent (Fitzgerald et al., 2000). Later, it was found
that the shedding of Sdc1 and Sdc4 is stimulated by the
recombinant TACE catalytic domain (Pruessmeyer et al.,
2010). Sdc3 shedding has been reported in Schwann cells
obtained from the sciatic nerves of 2- to 4-day-old rats
(Asundi et al., 2003). As the shedding process was reduced
in cells treated with an MMP inhibitor, the involvement of
MMPs in mediating Sdc3 shedding is very likely (Asundi
et al., 2003) (Figure 3).

These results indicate that syndecans can be the substrate
of more than one sheddase, suggesting that different
sheddases act in a tissue-specific manner. The different func-
tions of the various shed fragments and their attached factors
are still not fully understood, but it has become clear that
shed syndecans influence signalling cascades in several differ-
ent ways. As shedding of syndecans is specifically regulated
under disease conditions, soluble syndecan ectodomains are
used as biomarker for various diseases.

Shed syndecans as biomarkers for
different diseases
Syndecan shedding has been shown to regulate many patho-
physiological processes, such as inflammation, tissue repair
and cancer cell proliferation (Maeda et al., 2004). Tissue in-
jury is accompanied by cellular stress, accumulation of
leukocyte-derived proteases (thrombin, plasmin, elastase,
etc.) and release of growth factors, each of whichmay acceler-
ate syndecan shedding (Subramanian et al., 1997). For this
reason, shed syndecan ectodomains are found in inflamma-
tory fluids, where they are thought to maintain proteolytic
and growth factor balance (Subramanian et al., 1997), as well
as mediating inflammation (Fitzgerald et al., 2000). A detailed
list of the different diseases for which shed Sdc1, Sdc2, Sdc3
and Sdc4 have been proposed as biomarkers is given in
Table 1. We provide here some typical studies on shed
syndecans as biomarkers for various diseases.

Most publications on soluble syndecans as biomarkers fo-
cus on soluble Sdc1. For example, Sdc1 ectodomains are ele-
vated in blood of patients with sepsis (Nelson et al., 2008;
Steppan et al., 2011), ischaemia–reperfusion injury (Rehm
et al., 2007), graft-versus-host disease (Seidel et al., 2003)
and various cancers (Joensuu et al., 2002; Yang et al., 2002).
Furthermore, studies in mice have shown that the

Figure 3
Overview of the proteinase cleavage sites on the syndecan ectodomains. The validated shedding sites for Sdc1 and Sdc4 are indicated at the re-
spective amino acid number and sheddases according to Manon-Jensen et al. (2010) (shown in black). The predicted shedding sites for Sdc2 and
Sdc3 include only the prediction for MMP2, MMP3 andMMP14 and thrombin. The shedding sites for Sdc2 and Sdc3 are generated using a cleav-
age site prediction tool (shownin grey). Again, the amino acid is indicated with the predicted sheddase. HS-GAG chains are shown in blue colour
and chondroitin sulfate GAG chains are shown in orange.
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Table 1
List of soluble syndecans as biomarkers for various diseases including the respective reference

Sdc1

Disease Sample Regulation References

Sepsis Arterial plasma,
serum

Significantly elevated levels, correlation with
cardiovascular Sequential Organ Failure Assessment score

Nelson et al. (2008);
Steppan et al. (2011)

Sepsis survival after major
abdominal surgery

Plasma Patients with post-operative sepsis showed increased
levels; levels associated with survival after sepsis

Holzmann et al. (2018)

Acute traumatic
endotheliopathy in isolated
severe brain injury

Plasma Sdc1 levels above 30.5 ng·mL�1 indicate patients with
traumatic brain injury-associated coagulopathy

Albert et al. (2018)

Trauma patients Serum/plasma High levels of Sdc1 are associated with inflammation,
coagulopathy and increased mortality, a syndecan-1
level ≥ 40 ng·mL�1 identified patients with worse
outcome

Johansson et al.
(2011); Johansson
et al. (2012); Gonzalez
Rodriguez et al. (2017)

Microvascular glycocalyx
degradation

Plasma Syndecan-1 correlates with glycocalyx thickness and
permeability changes

Torres Filho et al.
(2016)

KD Serum Sdc1 levels may indicate endothelial damage and
inflammation KD

Luo et al. (2018a)

Pulmonary embolism Blood Increased levels of Sdc1 in high risk pulmonary embolism
patients

Lehnert et al. (2017)

Multicentric Castleman’s
disease

Bronchoalveolar
lavage fluid

Marked elevation of soluble Sdc1 Hasegawa et al. (2007)

Heart failure Plasma Syndecan-1 correlates with fibrosis biomarkers Tromp et al. (2014)

Ventricular remodelling
after myocardial infarction

Serum Increased levels of soluble Sdc1 Lei et al. (2012)

Takotsubo cardiomyopathy Blood Sdc1 is significantly increased in the acute stage of TCC Nguyen et al. (2017)

AKI Blood Prognostic marker to assess the risk of AKI Liborio et al. (2015);
Neves et al. (2015); de
Melo Bezerra
Cavalcante et al.
(2016)

Chronic kidney disease Plasma Plasma levels were increased compared to the healthy
control group

Padberg et al. (2014)

Ischaemia–reperfusion
injury

Arterial blood Elevated levels of Sdc1 Rehm et al. (2007)

DIC Serum/plasma Correlates with increased levels of Sdc1, predicts DIC in
patients with sepsis

Ikeda et al. (2018)

Hypocoagulation Serum/plasma Increased levels are associated with hypocoagulation in
patients with sepsis

Ostrowski et al. (2015)

GVHD Serum Sdc1 levels elevated in patients who developed acute
GVHD after allogeneic stem cell transplantation

Seidel et al. (2003)

Crohn’s disease Serum Higher Sdc1 levels compared to normal population Zhang et al. (2013);
Cekic et al. (2015)

Small bowel damage in
children with CD

Serum Elevated levels of Sdc1 in children with CD, correlation of
Sdc1 levels and mucosal damage

Yablecovitch et al.
(2017)

SLE Serum Higher levels in SLE patients with nephritis compared to RA
patients and healthy control group, possible marker for
active SLE

Minowa et al. (2011);
Kim et al. (2015);
Mosaad et al. (2017)

Liver fibrosis stage in
patients with hepatitis C

Serum Suggested as non-invasive marker to predict liver fibrosis
stage

Zvibel et al. (2009)

Hantavirus infection Plasma Sdc1 was associated with disease severity (as wells as levels
of thrombocytes, albumin, IGFBP-1, decreased blood
pressure)

Connolly-Andersen
et al. (2014)

Type I diabetes mellitus Serum Sdc1 is upregulated Svennevig et al. (2006)

continues
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Table 1
(Continued)

Sdc1

Disease Sample Regulation References

PE Serum/plasma Statistical differences in serum between PE and normal
pregnancy, Sdc1 in plasma is significantly lower before the
onset of PE

Gandley et al. (2016);
Alici Davutoglu et al.
(2018)

HELLP syndrome Serum Sdc1 levels increase in normal pregnancy but even higher
in women with HELLP

Hofmann-Kiefer et al.
(2013)

Rhegmatogenous retinal
detachment

Subretinal fluid/
vitreous fluid

Significant increase of Sdc1 Wang et al. (2008)

Systemic sclerosis Serum Significantly higher than in healthy control group Wu et al. (2016)

Pleural malignancies Pleural effusions Sdc1 levels can distinguish malignant and benign disease Mundt et al. (2014)

Lung cancer Serum High Sdc1 levels were associated with a poor survival rate Joensuu et al. (2002);
Anttonen et al. (2003)

Myeloma (multiple) Serum Possible prognostic marker Dhodapkar et al.
(1998); Seidel et al.
(2000); Yang et al.
(2002); Aref et al.
(2003); Janosi et al.
(2004); Lovell et al.
(2005); Maisnar et al.
(2006); Scudla et al.
(2009); Kim et al.
(2010)

Hepatocellular carcinoma Serum High levels in patients with hepatocellular carcinoma
detected, high levels associated with greater risk of
tumour recurrence and death

Metwaly et al. (2012);
Nault et al. (2013)

(Metastatic) CRC Serum Baseline Sdc1 is suggested as prognostic marker for overall
survival in metastatic CRC, Sdc1, among others, may be
involved in tumour progression and can be used for
prognosis of CRC patients

Jary et al. (2016);
Mitselou et al. (2016)

PC Serum Significant higher Sdc1 levels in advanced cases of PC,
independent factor of adverse overall and disease-specific
survival

Szarvas et al. (2016)

Hodgkin’s lymphoma Serum Serum levels are elevated but do not strongly correlate
with other parameters, further evaluation is required

Vassilakopoulos et al.
(2005)

Lymphocytic leukaemia Plasma Soluble Sdc1 in combination with beat2-M and Rai stage
may replace testing for lgVH mutation status

Jilani et al. (2009)

Breast cancer Serum Positive correlation between soluble Sdc1 and tumour size Malek-Hosseini et al.
(2017)

Bladder cancer Serum Increased levels in sera of bladder cancer patients Sanaee et al. (2015)

Sdc2

Disease Sample Regulation References

Colon cancer Serum Sdc2 detectable in majority of colon cancer patients, while all
healthy patients were negative

Choi et al. (2015)

Keloid tissue Tissue Up-regulated in keloid tissue Mukhopadhyay et al.
(2010)

Sdc3

Soluble Sdc3 has not been reported to be a suitable biomarker.

Sdc4

Disease Sample Regulation References

Acute bacterial
pneumonia

Serum Up-regulation (at the onset, mild pneumonia compared to
severe pneumonia)

Nikaido et al. (2015)

continues
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inflammatory response to toxins, chemicals, allergens and
pathogens is dysregulated in the absence of Sdc1 or when its
shedding is inhibited (Kainulainen et al., 1998; Kato et al.,
1998), suggesting that Sdc1 shedding is activated to ensure
adequate tissue response to inflammation. Consequently,
Sdc1 has been proposed to be a biomarker for sepsis survival
after major abdominal surgery, as well as for acute traumatic
endotheliopathy in isolated severe brain injury, and for small
bowel mucosal damage in children with celiac disease
(Yablecovitch et al., 2017; Albert et al., 2018; Holzmann
et al., 2018).

The activation of Sdc2 shedding has been described for
cancer cells. In particular, the MMP7-induced shedding of
Sdc2 was detected in colon cancer cells in vitro (Choi et al.,
2011). Patients with advanced colon cancer exhibited signifi-
cantly higher Sdc2 serum levels compared to a healthy con-
trol group, which was mainly negative for Sdc2 serum levels
(Choi et al., 2015). Furthermore, Sdc2 and FGF-2 were
overexpressed in keloid tissue. The authors suggested that
both proteins interact with each other, resulting in shedding
of Sdc2 and that shed Sdc2 might be involved in the keloidic
phenotype (Mukhopadhyay et al., 2010).

Besides its role in cancer, shed Sdc2 has been linked to an-
giogenesis, as its expression is increased during endothelial
cell angiogenic processes (Fears et al., 2006). Shed Sdc2 regu-
lated angiogenesis by inhibiting endothelial cell migration
in human and rodent models and thereby reduced tumour
growth (De Rossi et al., 2014).

Soluble Sdc4 in serum is mainly associated with pneu-
monia and heart failure. In patients with mild pneumonia,
Sdc4 was increased in comparison to patients with severe
pneumonia. Interestingly, a short-term antibiotic therapy
further increased Sdc4 levels, leading the authors to the
suggestion that Sdc4 might have an anti-inflammatory
function (Nikaido et al., 2015). The same research group

showed that Sdc4 levels were increased in patients with idi-
opathic interstitial pneumonia. Again, the authors propose
that baseline serum Sdc4 levels were indicative for the prog-
nosis, showing that higher serum levels of Sdc4 were
associated with a worse prognosis than lower baseline levels
(Sato et al., 2017). Sdc4 serum levels were also associated
with severe community-acquired pneumonia, and these
increased serum levels were linked to a higher mortality rate
(Luo et al., 2018b).

Furthermore, high serum Sdc4 levels were found to be a
significant predictor of heart failure in patients with hyper-
tension (Bielecka-Dabrowa et al., 2015), and Sdc4 was also
proposed as a suitable biomarker for the adverse left ventricu-
lar (LV) remodelling in patients with dilated cardiomyopathy
(Bielecka-Dabrowa et al., 2013). This finding was corrobo-
rated in another study in which serum Sdc4 levels were pro-
posed to be a biomarker for LV remodelling in heart failure
(Takahashi et al., 2011). Serum Sdc4 levels were also increased
in haemodialysis patients and correlated with geometrical
echocardiographic parameters. This study suggested Sdc4 as
a predictor for cardiovascular mortality in haemodialysis pa-
tients (Jaroszynski et al., 2016). Apart from cardiovascular dis-
eases and pneumonia, increased Sdc4 serum levels have also
been reported in patients with atopic dermatitis. In this
study, Sdc4 levels correlated with the disease severity as well
as eczema area, the severity index and visual analogue scale
scores for itch (Nakao et al., 2016).

In particular, serum levels of soluble Sdc1 and Sdc4 have
been shown to be associated with various diseases. Therefore,
it will be a challenge to differentiate the cause of elevated
syndecan levels in different patients to decide to which
disease they might relate. More distinct analyses of the
shedding site and/or modification of the HS-GAG chains will
improve the sensitivity of the suggested biomarker for the
respective disease.

Table 1
(Continued)

Sdc4

Disease Sample Regulation References

IIP Serum Down-regulation in acute exacerbation, patients with higher
baseline have worse prognosis for IIP (prognostic predictor)

Sato et al. (2017)

Severe community acquired
pneumonia

Serum Patients with Sdc4 levels below 6.68 ng·mL�1 have a higher
mortality (prognostic predictor)

Luo et al. (2018b)

Heart failure in patients with
hypertension

Serum Sdc4 levels above 2.3 ng·mL�1 (among others) are significant
predictor for heart failure

Bielecka-Dabrowa
et al. (2015)

Adverse LV remodelling in
patients with dilated
cardiomyopathy

Serum Sdc4 correlated positively with LV diastolic/systolic diameters,
might be useful in predicting LV remodelling

Takahashi et al.
(2011); Bielecka-
Dabrowa et al. (2013)

Atopic dermatitis Serum Levels upregulated compared to control group and correlate
with disease severity, eczema area, severity index and itch
visual analogue scale scores

Nakao et al. (2016)

Cardiovascular mortality in HD
patients

Serum Sdc4 levels are increased in HD patients, levels correlate with
echocardiographic parameters (predictor for cardiovascular
mortality)

Jaroszynski et al.
(2016)

AKI, acute kidney injury; CD, celiac disease; CRC, colorectal cancer; DIC, disseminated intravascular coagulation; KD, Kawasaki disease; GVHD, Graft-
versus-host disease; HELLP, Haemolysis, elevated liver enzymes and low platelets; HD, haemodialysis; IIP, idiopathic intestinal pneumonia; PC, prostate
cancer; PE, preeclampsia; RA, rheumatoid arthritis; SLE, Systemic lupus erythematosus; TCC, terminal complement complex.
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Current therapies targeting syndecans
Because of the involvement of syndecans in various diseases
as already discussed, many agents interfering with the expres-
sion and function of syndecans are currently under investiga-
tion to improve the clinical management of several diseases.
In particular, the role of heparan sulfate proteoglycans
(HSPGs) and heparanases in several malignant tumours is
currently the focus for novel therapeutic approaches.
Heparanse-1 has been associated with increased metastasis
and poor prognosis; therefore, silencing of this heparanase
has been performed and found to be successful in reducing
the invasiveness and migratory capabilities of human osteo-
sarcoma cells (Fan et al., 2011). Further evidence for the ther-
apeutic potential of heparanase usage comes from the study
of Wang et al. (2013); showing that low MW heparin amelio-
rated experimental colitis in mice by down-regulating IL-1β
and inhibiting Sdc1 shedding in the intestinal mucosa. These
studies highlight the important role of the HS chains and also
the therapeutic potential in modifying or cleaving the side
chains to modulate syndecan functions.

Furthermore, antibodies or short peptide inhibitors for
Sdc1 have been tested for their efficacy in cancer therapy.
One example is synstatin, which is a selective inhibitor of
αvβ3 or αvβ5 integrin and insulin-like growth factor 1 recep-
tor interaction and thus preventing tumour survival
(Rapraeger et al., 2013; Beauvais et al., 2016). Synstatin is a re-
combinant Sdc1 protein, which has been truncated to the
shortest sequence that retained the full inhibitory activity
(SSTN92-119). Furthermore, a soluble Sdc1- Fc hybrid mole-
cule was generated by fusing the ectodomain of Sdc1 to the
Fc domain of a human IgG. The authors describe that the
sdc1-Fc hybrid molecule acted on various levels to prevent
HIV-infection, as well as herpes simplex virus infection. The
HS chains of the syndecan-Fc hybrid molecule were essential
for the HIV-1 neutralization (Bobardt et al., 2010). The solu-
ble form of the Sdc1 has also been shown to act as a tumour
suppressor molecule by inhibiting tumour growth and induc-
ing apoptosis of some cancer cell lines in vitro. Therefore, an-
alogues of Sdc1 were produced by carbodiimide conjugation
of GAG chains to a protein scaffold, generating synthetic pro-
teoglycans. These synthetic proteogylcans were shown to

Figure 4
Overview of the various therapeutic strategies using soluble syndecans or targeting syndecan signalling for different diseases. (A) Inhibition of HS
cleavage; (B) heparin treatment; (C) blocking antibody; (D) soluble Sdc and/or analogues.
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inhibit myeloma cell viability in vitro and in vivo in a mouse
model of breast cancer (Pumphrey et al., 2002). Not only sol-
uble Sdc1 has been shown to exhibit therapeutic potential,
there is also evidence for a beneficial effect of shed Sdc2. Shed
Sdc2 inhibits angiogenesis by inhibiting endothelial cell mi-
gration and thereby reduces tumour growth (De Rossi et al.,
2014). This finding gives rise to a novel therapeutic strategy
to target pathologies that are characterized by new blood ves-
sel formation, like different cancers, infectious diseases and
autoimmune disorders.

These studies highlight the anticancer and antiviral activ-
ities of GAG chain-containing proteins and provide the foun-
dation for future development of synthetic proteoglycans as
novel therapeutic agents.

Interestingly, also the overexpression of the C-terminal
fragment of Sdc1 has been shown to suppress migration and
invasion of tumour cells. This inhibitory effect, however,
was only seen in cells expressing endogenous Sdc1 but not
in Sdc1 knockout cells. The C-terminal Sdc1 fragment sup-
pressed tumour cell migration and increased basal phosphor-
ylation of Src and FAK. The authors explain the observed
effects with an antagonizing mechanism of the C-terminal
fragment for the Sdc1-dependent tumour cell migration
in vitro and in vivo by dysregulating pro-adhesive signalling
pathways (Pasqualon et al., 2015).

There is also evidence that the blockade of Sdc4 using a
blocking antibody might have a positive effect in preventing
cartilage destruction in a mouse model of osteoarthritis
(Echtermeyer et al., 2009). The authors describe that Sdc4-
mediated cartilage destruction in osteoarthritis is mediated
by binding of the aggrecanase (ADAMTS-5) to the side chains
of Sdc4, thereby fixing ADAMTS-5 at the cell surface. The ac-
tivation of ADAMTS-5 is mediated by MMP3 expression,
which is regulated in an IL-1-dependent manner by Sdc4, as
Sdc4 regulates the sensitivity of chondrocytes to IL-1 signal-
ling (Echtermeyer et al., 2009).

Figure 4 summarizes the current therapeutic strategies
involving modification of Sdc-dependent signalling path-
ways. Four different approaches can be differentiated. The
first approach is based on the inhibition of HS side chain
cleavage and thereby inhibits the HS-fragment-induced acti-
vation of inflammatory signalling cascades and Sdc-shedding
(Figure 4A). The second strategy is based on the anti-
inflammatory effect of low MW heparin, although the exact
mechanism of the ant-inflammatory effect is not known
(Figure 4B). The third mechanism is based on the blockade
of Sdc4 signalling and inhibition of IL-1-dependent inflam-
matory signals. Again, the exact mechanism of this blockade
is not described (Figure 4C). The last approach is based on the
use of soluble syndecans or their synthetic variants. There are
several studies using either full length soluble syndecans or
truncated forms or even synthetic variants with synthetic
HS side chains attached (Figure 4D).

Conclusion
The current knowledge about syndecan shedding highlights
the role of soluble syndecans in various diseases. However,
the main function of soluble syndecans depends mainly
on the presence of GAG chains, which are known to be

modified during ageing, disease and cell differentiation
(Bassett et al., 2006). At the same time, the respective
sheddases are modulated depending on external stimuli,
cell differentiation and inflammation. The current knowl-
edge just elucidates parts of the highly complex temporal
and spatial regulation of syndecan expression, regulation
of morphogen binding and further shedding during ageing
and diseases. This makes the usage of soluble syndecans as
biomarkers difficult, especially as more than one stimulus
might evoke shedding of the same syndecan, thereby re-
ducing the specificity of the potential biomarker. There is
clearly a therapeutic potential for soluble syndecans in dif-
ferent diseases; however, more insight in the role GAG
chains and GAG chain modification is needed to fully un-
derstand the different roles and effects. Syndecan core pro-
teins most likely serve mainly as the anchorage for these
highly complex sugar chains, building the basis for disease
regulated shedding.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked to
corresponding entries in http://www.guidetopharmacology.
org, the common portal for data from the IUPHAR/BPS Guide
to PHARMACOLOGY (Harding et al., 2018), and are perma-
nently archived in the Concise Guide to PHARMACOLOGY
2017/18 (Alexander et al., 2017a,b).
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